Arbeitspapier

Forecasting Sovereign Bond Realized Volatility Using Time-Varying Coefficients Model

This paper studies predictability of realized volatility of U.S. Treasury futures using high-frequency data for 2-year, 5-year, 10-year and 30-year tenors from 2006 to 2017. We extend heterogeneous autoregressive model by Corsi (2009) by higher-order realized moments and allow all model coefficients to be time-varying in order to explore dynamics in forecasting power of individual predictors across the term structure. We find realized kurtosis to be valuable predictor across the term structure with robust contribution also in out-of-sample analysis for the shorter tenors. Time-varying coefficient models are found to bring significant out-of-sample forecasting accuracy gain at the short end of the term structure. Further, we detect significant asymmetry in forecasting errors present for all the tenors as the constant-coeffi cient models were found to generate systemic under-predictions of future realized volatility.

Sprache
Englisch

Erschienen in
Series: IES Working Paper ; No. 19/2021

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Financial Forecasting and Simulation
Thema
Realized moments
Sovereign bonds
Volatility forecasting
High-frequency data
Time-varying coefficients

Ereignis
Geistige Schöpfung
(wer)
Malinska, Barbora
Ereignis
Veröffentlichung
(wer)
Charles University in Prague, Institute of Economic Studies (IES)
(wo)
Prague
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Malinska, Barbora
  • Charles University in Prague, Institute of Economic Studies (IES)

Entstanden

  • 2021

Ähnliche Objekte (12)