Funktorialitäten für relative topologische Gruppen

Abstract: In this thesis, a right adjoint to the fibre product functor of the category of relative topological spaces with locally proper maps is constructed. After a discussion of its basic properties in chapter 3, in particular concerning its relation to the direct image functor of sheaves, it is used to formulate a version of Frobenius reciprocity in the context of continuous representations or, more generally, topological groups acting on relative topological spaces.
The definition of locally proper map has been introduced in [O. Schnürer, W. Soergel 2014]. It is a natural generalization of locally compact spaces to continuous maps. In the same vein, a separable or universally closed map is a generalization of Hausdorff spaces to continuous maps. Chapter 2 contributes strongly to the understanding of separable locally proper maps. The main result is a generalizition of the Alexandroff or one-point-compactification to continuous mappings: Every continuous map can be proprified by embedding the domain in a larger topological space and extending the map appropriately.
A corollary of this result is the characterization of separable locally proper maps as compositions of an open embedding and a separable proper map

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Deutsch
Notes
Universität Freiburg, Dissertation, 2018

Classification
Mathematik
Keyword
Eigentliche Abbildung
Stetige Abbildung
Topologische Gruppe
Lemma
Offene Menge
Kategorientheorie
Eigentliche Abbildung
Kategorientheorie
Topologische Gruppe
Adjunktion
Faserung
Mengentheoretische Topologie

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2018
Creator
Contributor

DOI
10.6094/UNIFR/16008
URN
urn:nbn:de:bsz:25-freidok-160083
Rights
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:38 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Time of origin

  • 2018

Other Objects (12)