Funktorialitäten für relative topologische Gruppen
Abstract: In this thesis, a right adjoint to the fibre product functor of the category of relative topological spaces with locally proper maps is constructed. After a discussion of its basic properties in chapter 3, in particular concerning its relation to the direct image functor of sheaves, it is used to formulate a version of Frobenius reciprocity in the context of continuous representations or, more generally, topological groups acting on relative topological spaces.
The definition of locally proper map has been introduced in [O. Schnürer, W. Soergel 2014]. It is a natural generalization of locally compact spaces to continuous maps. In the same vein, a separable or universally closed map is a generalization of Hausdorff spaces to continuous maps. Chapter 2 contributes strongly to the understanding of separable locally proper maps. The main result is a generalizition of the Alexandroff or one-point-compactification to continuous mappings: Every continuous map can be proprified by embedding the domain in a larger topological space and extending the map appropriately.
A corollary of this result is the characterization of separable locally proper maps as compositions of an open embedding and a separable proper map
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Deutsch
- Notes
-
Universität Freiburg, Dissertation, 2018
- Classification
-
Mathematik
- Keyword
-
Eigentliche Abbildung
Stetige Abbildung
Topologische Gruppe
Lemma
Offene Menge
Kategorientheorie
Eigentliche Abbildung
Kategorientheorie
Topologische Gruppe
Adjunktion
Faserung
Mengentheoretische Topologie
- Event
-
Veröffentlichung
- (where)
-
Freiburg
- (who)
-
Universität
- (when)
-
2018
- Creator
- Contributor
- DOI
-
10.6094/UNIFR/16008
- URN
-
urn:nbn:de:bsz:25-freidok-160083
- Rights
-
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:38 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
Time of origin
- 2018