Arbeitspapier

Discounted optimal stopping for maxima in diffusion models with finite horizon

We present a solution to some discounted optimal stopping problem for the maximum of a geometric Brownian motion on a finite time interval. The method of proof is based on reducing the initial optimal stopping problem with the continuation region determined by an increasing continuous boundary surface to a parabolic free-boundary problem. Using the change-of-variable formula with local time on surface we show that the optimal boundary can be characterized as a unique solution of a nonlinear integral equation. The result can be interpreted as pricing American fixed-strike lookback option in a diffusion model with finite time horizon.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2006,057

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Gapeev, Pavel V.
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Gapeev, Pavel V.
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2006

Ähnliche Objekte (12)