Arbeitspapier
Discounted optimal stopping for maxima in diffusion models with finite horizon
We present a solution to some discounted optimal stopping problem for the maximum of a geometric Brownian motion on a finite time interval. The method of proof is based on reducing the initial optimal stopping problem with the continuation region determined by an increasing continuous boundary surface to a parabolic free-boundary problem. Using the change-of-variable formula with local time on surface we show that the optimal boundary can be characterized as a unique solution of a nonlinear integral equation. The result can be interpreted as pricing American fixed-strike lookback option in a diffusion model with finite time horizon.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2006,057
- Klassifikation
-
Wirtschaft
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Gapeev, Pavel V.
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2006
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Gapeev, Pavel V.
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2006