Turbo autoencoders for the DNA data storage channel with Autoturbo-DNA

Abstract: DNA, with its high storage density and long-term stability, is a potential candidate for a next-generation storage device. The DNA data storage channel, composed of synthesis, amplification, storage, and sequencing, exhibits error probabilities and error profiles specific to the components of the channel. Here, we present Autoturbo-DNA, a PyTorch framework for training error-correcting, overcomplete autoencoders specifically tailored for the DNA data storage channel. It allows training different architecture combinations and using a wide variety of channel component models for noise generation during training. It further supports training the encoder to generate DNA sequences that adhere to user-defined constraints. Autoturbo-DNA exhibits error-correction capabilities close to non-neural-network state-of-the-art error correction and constrained codes for DNA data storage. Our results indicate that neural-network-based codes can be a viable alternative to traditionally designed codes for the DNA data storage channel

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
iScience. - 27, 5 , 109575, ISSN: 2589-0042

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Welzel, Marius
Dreßler, Hagen
Heider, Dominik

DOI
10.1016/j.isci.2024.109575
URN
urn:nbn:de:bsz:25-freidok-2488155
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:59 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Welzel, Marius
  • Dreßler, Hagen
  • Heider, Dominik
  • Universität

Entstanden

  • 2024

Ähnliche Objekte (12)