Analog nanophotonic computing going practical: silicon photonic deep learning engines for tiled optical matrix multiplication with dynamic precision

Abstract: Analog photonic computing comprises a promising candidate for accelerating the linear operations of deep neural networks (DNNs), since it provides ultrahigh bandwidth, low footprint and low power consumption computing capabilities. However, the confined photonic hardware size, along with the limited bit precision of high-speed electro-optical components, impose stringent requirements towards surpassing the performance levels of current digital processors. Herein, we propose and experimentally demonstrate a speed-optimized dynamic precision neural network (NN) inference via tiled matrix multiplication (TMM) on a low-radix silicon photonic processor. We introduce a theoretical model that relates the noise figure of a photonic neuron with the bit precision requirements per neural layer. The inference evaluation of an NN trained for the classification of the IRIS dataset is, then, experimentally performed over a silicon coherent photonic neuron that can support optical TMM up to 50 GHz, allowing, simultaneously, for dynamic-precision calculations. Targeting on a high-accuracy and speed-optimized classification performance, we experimentally applied the model-extracted mixed-precision NN inference scheme via the respective alteration of the operational compute rates per neural layer. This dynamic-precision NN inference revealed a 55% decrease in the execution time of the linear operations compared to a fixed-precision scheme, without degrading its accuracy.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Analog nanophotonic computing going practical: silicon photonic deep learning engines for tiled optical matrix multiplication with dynamic precision ; volume:12 ; number:5 ; year:2023 ; pages:963-973 ; extent:11
Nanophotonics ; 12, Heft 5 (2023), 963-973 (gesamt 11)

Creator
Giamougiannis, George
Tsakyridis, Apostolos
Moralis-Pegios, Miltiadis
Pappas, Christos
Kirtas, Manos
Passalis, Nikolaos
Lazovsky, David
Tefas, Anastasios
Pleros, Nikos

DOI
10.1515/nanoph-2022-0423
URN
urn:nbn:de:101:1-2023030913392979254831
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:47 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Giamougiannis, George
  • Tsakyridis, Apostolos
  • Moralis-Pegios, Miltiadis
  • Pappas, Christos
  • Kirtas, Manos
  • Passalis, Nikolaos
  • Lazovsky, David
  • Tefas, Anastasios
  • Pleros, Nikos

Other Objects (12)