Arbeitspapier
Screen for collusive behavior: A machine learning approach
The paper uses a machine learning technique to build up a screen for collusive behavior. Such tools can be applied by competition authorities but also by companies to screen the behavior of their suppliers. The method is applied to the German retail gasoline market to detect anomalous behavior in the price setting of the filling stations. Therefore, the algorithm identifies anomalies in the data-generating process. The results show that various anomalies can be detected with this method. These anomalies in the price setting behavior are then discussed with respect to their implications for the competitiveness of the market.
- Language
-
Englisch
- Bibliographic citation
-
Series: Hohenheim Discussion Papers in Business, Economics and Social Sciences ; No. 01-2024
- Classification
-
Wirtschaft
Forecasting Models; Simulation Methods
Antitrust Law
Antitrust Policy and Public Enterprises, Nonprofit Institutions, and Professional Organizations
- Subject
-
Machine Learning
Cartel Screens
Fuel Retail Market
- Event
-
Geistige Schöpfung
- (who)
-
Bantle, Melissa
- Event
-
Veröffentlichung
- (who)
-
Universität Hohenheim, Fakultät Wirtschafts- und Sozialwissenschaften
- (where)
-
Stuttgart
- (when)
-
2024
- Handle
- URN
-
urn:nbn:de:bsz:100-opus-23003
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Bantle, Melissa
- Universität Hohenheim, Fakultät Wirtschafts- und Sozialwissenschaften
Time of origin
- 2024