Arbeitspapier

Occupational Classifications: A Machine Learning Approach

Characterizing the work that people do on their jobs is a longstanding and core issue in labor economics. Traditionally, classification has been done manually. If it were possible to combine new computational tools and administrative wage records to generate an automated crosswalk between job titles and occupations, millions of dollars could be saved in labor costs, data processing could be sped up, data could become more consistent, and it might be possible to generate, without a lag, current information about the changing occupational composition of the labor market. This paper examines the potential to assign occupations to job titles contained in administrative data using automated, machine-learning approaches. We use a new extraordinarily rich and detailed set of data on transactional HR records of large firms (universities) in a relatively narrowly defined industry (public institutions of higher education) to identify the potential for machine-learning approaches to classify occupations.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 11738

Klassifikation
Wirtschaft
Labor Force and Employment, Size, and Structure
Human Capital; Skills; Occupational Choice; Labor Productivity
Thema
UMETRICS
occupational classifications
machine learning
administrative data
transaction data

Ereignis
Geistige Schöpfung
(wer)
Ikudo, Akina
Lane, Julia
Staudt, Joseph
Weinberg, Bruce A.
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ikudo, Akina
  • Lane, Julia
  • Staudt, Joseph
  • Weinberg, Bruce A.
  • Institute of Labor Economics (IZA)

Entstanden

  • 2018

Ähnliche Objekte (12)