Uniqueness theorems for variational problems by the method of transformation groups

A classical problem in the calculus of variations is the investigation ofcritical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity. TOC:Introduction.- Uniqueness of Critical Points (I).- Uniqueness of Citical Pints (II).- Variational Problems on Riemannian Manifolds.- Scalar Problems in Euclidean Space.- Vector Problems in Euclidean Space.- Fréchet-differentiability.- Lipschitz-properties of ge andomegae.

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISBN
9783540218395
3540218394
Dimensions
24 cm
Extent
XIII, 152 S.
Language
Englisch
Notes
graph. Darst.
Literaturverz. S. 145 - 149

Bibliographic citation
Lecture notes in mathematics ; Vol. 1841

Classification
Mathematik
Keyword
Variationsrechnung
Kritischer Punkt
Transformationsgruppe
Eindeutigkeitssatz

Event
Veröffentlichung
(where)
Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris, Tokyo
(who)
Springer
(when)
2004
Creator

Table of contents
Rights
Bei diesem Objekt liegt nur das Inhaltsverzeichnis digital vor. Der Zugriff darauf ist unbeschränkt möglich.
Last update
11.03.2025, 11:40 AM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2004

Other Objects (12)