Can UVA-light-activated riboflavin-induced collagen crosslinking be transferred from ophthalmology to spine surgery? A feasibility study on bovine intervertebral disc

Abstract: Background
Collagen cross-links contribute to the mechanical resilience of the intervertebral disc (IVD). UVA-light-activated riboflavin-induced collagen crosslinking (UVA-CXL) is a well-established and effective ophthalmological intervention that increases the mechanical rigidity of the collagen-rich corneal matrix in Keratoconus. This study explores the feasibility, safety and efficacy of translating this intervention in reinforcing the IVD.

Methods
Annulus fibrosus (AF) cells were isolated from bovine IVDs and treated with different combinations of riboflavin (RF) concentrations (0.05–8 mM) and UVA light intensities (0.3–4 mW/cm2). Metabolic activity (resazurin assay), cell viability (TUNEL assay), and gene expression of apoptosis regulators C-FOS and PT5 were assessed immediately and 24 hours after treatment. Biomechanical effects of UVA-CXL on IVDs were measured by indentation analysis of changes in the instantaneous modulus and by peel-force delamination strength analysis of the AF prior and after treatment.

Results
Different intensities of UVA did not impair the metabolic activity of AF cells. However, RF affected metabolic activity (p < 0.001). PT53 expression was similar in all RF conditions tested while C-FOS expression decreased 24 hours after treatment. Twenty-four hours after treatment, no apoptotic cells were observed in any condition tested. Biomechanical characterizations showed a significant increase in the annular peel strength of the UVA-CXL group, when compared to controls of UVA and RF alone (p < 0.05). UVA-CXL treated IVDs showed up to 152% higher (p < 0.001) instantaneous modulus values compared to the untreated control.

Conclusion
This is the first study on UVA-CXL treatment of IVD. It induced significantly increased delamination strength and instantaneous modulus indentation values in intact IVD samples in a structure–function relationship. RF concentrations and UVA intensities utilized in ophthalmological clinical protocols were well tolerated by the AF cells. Our findings suggest that UVA-CXL may be a promising tool to reinforce the IVD matrix

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
PLOS ONE. - 16, 6 (2021) , e0252672, ISSN: 1932-6203

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2021
Creator

DOI
10.1371/journal.pone.0252672
URN
urn:nbn:de:bsz:25-freidok-2190335
Rights
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:41 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2021

Other Objects (12)