Incidental vertebral fracture prediction using neuronal network-based automatic spine segmentation and volumetric bone mineral density extraction from routine clinical CT scans

Abstract: Objectives: To investigate vertebral osteoporotic fracture (VF) prediction by automatically extracted trabecular volumetric bone mineral density (vBMD) from routine CT, and to compare the model with fracture prevalence-based prediction models.

Methods: This single-center retrospective study included patients who underwent two thoraco-abdominal CT scans during clinical routine with an average inter-scan interval of 21.7 ± 13.1 months (range 5–52 months). Automatic spine segmentation and vBMD extraction was performed by a convolutional neural network framework (anduin.bonescreen.de). Mean vBMD was calculated for levels T5-8, T9-12, and L1-5. VFs were identified by an expert in spine imaging. Odds ratios (ORs) for prevalent and incident VFs were calculated for vBMD (per standard deviation decrease) at each level, for baseline VF prevalence (yes/no), and for baseline VF count (n) using logistic regression models, adjusted for age and sex. Models were compared using Akaike’s and Bayesian information criteria (AIC & BIC).

Results: 420 patients (mean age, 63 years ± 9, 276 males) were included in this study. 40 (25 female) had prevalent and 24 (13 female) had incident VFs. Individuals with lower vBMD at any spine level had higher odds for VFs (L1-5, prevalent VF: OR,95%-CI,p: 2.2, 1.4–3.5,p=0.001; incident VF: 3.5, 1.8–6.9,p<0.001). In contrast, VF status (2.15, 0.72–6.43,p=0.170) and count (1.38, 0.89–2.12,p=0.147) performed worse in incident VF prediction. Information criteria revealed best fit for vBMD-based models (AIC vBMD=165.2; VF status=181.0; count=180.7).

Conclusions: VF prediction based on automatically extracted vBMD from routine clinical MDCT outperforms prediction models based on VF status and count. These findings underline the importance of opportunistic quantitative osteoporosis screening in clinical routine MDCT data

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Frontiers in endocrinology. - 14 (2023) , 1207949, ISSN: 1664-2392

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber
Bodden, Jannis
Dieckmeyer, Michael
Sollmann, Nico
Burian, Egon
Rühling, Sebastian
Löffler, Maximilian
Sekuboyina, Anjany
El Husseini, Malek
Zimmer, Claus
Kirschke, Jan
Baum, Thomas

DOI
10.3389/fendo.2023.1207949
URN
urn:nbn:de:bsz:25-freidok-2385822
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)