Artikel

On spurious causality, CO2, and global temperature

Stips et al. (2016) use information flows (Liang (2008, 2014)) to establish causality from various forcings to global temperature. We show that the formulas being used hinge on a simplifying assumption that is nearly always rejected by the data. We propose the well-known forecast error variance decomposition based on a Vector Autoregression as an adequate measure of information flow, and find that most results in Stips et al. (2016) cannot be corroborated. Then, we discuss which modeling choices (e.g., the choice of CO2 series and assumptions about simultaneous relationships) may help in extracting credible estimates of causal flows and the transient climate response simply by looking at the joint dynamics of two climatic time series.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 3 ; Pages: 1-18 ; Basel: MDPI

Classification
Wirtschaft
Subject
climate econometrics
global warming
information flows
vector autoregressions

Event
Geistige Schöpfung
(who)
Goulet Coulombe, Philippe
Göbel, Maximilian
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/econometrics9030033
Handle
Last update
10.03.2025, 11:46 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Goulet Coulombe, Philippe
  • Göbel, Maximilian
  • MDPI

Time of origin

  • 2021

Other Objects (12)