Artikel

Nonparametric estimation of extreme quantiles with an application to longevity risk

A new method to estimate longevity risk based on the kernel estimation of the extreme quantiles of truncated age-at-death distributions is proposed. Its theoretical properties are presented and a simulation study is reported. The flexible yet accurate estimation of extreme quantiles of age-at-death conditional on having survived a certain age is fundamental for evaluating the risk of lifetime insurance. Our proposal combines a parametric distributions with nonparametric sample information, leading to obtain an asymptotic unbiased estimator of extreme quantiles for alternative distributions with different right tail shape, i.e., heavy tail or exponential tail. A method for estimating the longevity risk of a continuous temporary annuity is also shown. We illustrate our proposal with an application to the official age-at-death statistics of the population in Spain.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 9 ; Year: 2021 ; Issue: 4 ; Pages: 1-23 ; Basel: MDPI

Classification
Wirtschaft
Subject
extreme quantile
extreme value distribution
kernel estimation
lifetime annuity

Event
Geistige Schöpfung
(who)
Bolancé, Catalina
Guillén, Montserrat
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/risks9040077
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Bolancé, Catalina
  • Guillén, Montserrat
  • MDPI

Time of origin

  • 2021

Other Objects (12)