Arbeitspapier

Artificial neural network regression models: Predicting GDP growth

Artificial neural networks have become increasingly popular for statistical model fitting over the last years, mainly due to increasing computational power. In this paper, an introduction to the use of artificial neural network (ANN) regression models is given. The problem of predicting the GDP growth rate of 15 industrialized economies in the time period 1996-2016 serves as an example. It is shown that the ANN model is able to yield much more accurate predictions of GDP growth rates than a corresponding linear model. In particular, ANN models capture time trends very flexibly. This is relevant for forecasting, as demonstrated by out-of-sample predictions for 2017.

Sprache
Englisch

Erschienen in
Series: HWWI Research Paper ; No. 185

Klassifikation
Wirtschaft
Neural Networks and Related Topics
Forecasting Models; Simulation Methods
Optimization Techniques; Programming Models; Dynamic Analysis
Economic Growth and Aggregate Productivity: General
Thema
neural network
forecasting
panel data

Ereignis
Geistige Schöpfung
(wer)
Jahn, Malte
Ereignis
Veröffentlichung
(wer)
Hamburgisches WeltWirtschaftsInstitut (HWWI)
(wo)
Hamburg
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jahn, Malte
  • Hamburgisches WeltWirtschaftsInstitut (HWWI)

Entstanden

  • 2018

Ähnliche Objekte (12)