Arbeitspapier

How far can we forecast? Statistical tests of the predictive content

Forecasts are useless whenever the forecast error variance fails to be smaller than the unconditional variance of the target variable. This paper develops tests for the null hypothesis that forecasts become uninformative beyond some limiting forecast horizon h. Following Diebold and Mariano (DM, 1995) we propose a test based on the comparison of the mean-squared error of the forecast and the sample variance. We show that the resulting test does not possess a limiting normal distribution and suggest two simple modifications of the DM-type test with different limiting null distributions. Furthermore, a forecast encompassing test is developed that tends to better control the size of the test. In our empirical analysis, we apply our tests to macroeconomic forecasts from the survey of Consensus Economics. Our results suggest that forecasts of macroeconomic key variables are barely informative beyond 2-4 quarters ahead.

ISBN
978-3-95729-437-1
Sprache
Englisch

Erschienen in
Series: Bundesbank Discussion Paper ; No. 07/2018

Klassifikation
Wirtschaft
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Thema
Hypothesis Testing
Predictive Accuracy
Informativeness

Ereignis
Geistige Schöpfung
(wer)
Breitung, Jörg
Knüppel, Malte
Ereignis
Veröffentlichung
(wer)
Deutsche Bundesbank
(wo)
Frankfurt a. M.
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Breitung, Jörg
  • Knüppel, Malte
  • Deutsche Bundesbank

Entstanden

  • 2018

Ähnliche Objekte (12)