Arbeitspapier

Proxy variables and nonparametric identification of causal effects

Proxy variables are often used in linear regression models with the aim of removing potential confounding bias. In this paper we formalise proxy variables within the potential outcome framework, giving conditions under which it can be shown that causal effects are nonparametrically identified. We characterise two types of proxy variables and give concrete examples where the proxy conditions introduced may hold by design.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 2016:12

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Subject
average treatment effect
observational studies
potential outcomes
unobserved confounders

Event
Geistige Schöpfung
(who)
DeLuna, Xavier
Fowler, Philip
Johansson, Per-Olov
Event
Veröffentlichung
(who)
Institute for Evaluation of Labour Market and Education Policy (IFAU)
(where)
Uppsala
(when)
2016

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • DeLuna, Xavier
  • Fowler, Philip
  • Johansson, Per-Olov
  • Institute for Evaluation of Labour Market and Education Policy (IFAU)

Time of origin

  • 2016

Other Objects (12)