Arbeitspapier

Identification and shape restrictions in nonparametric instrumental variables estimation

This paper is concerned with inference about an unidentified linear functional, L(g), where the function g satisfies the relation Y=g(x) + U; E(U/W) = 0. In this relation, Y is the dependent variable, X is a possibly endogenous explanatory variable, W is an instrument for X, and U is an unobserved random variable. The data are an independent random sample of (Y, X, W). In much applied research, X and W are discrete, and W has fewer points of support than X. Consequently, neither g nor L(g) is nonparametrically identified. Indeed, L(g) can have any value in (-∞, ∞). In applied research, this problem is typically overcome and point identification is achieved by assuming that g is a linear function of X. However, the assumption of linearity is arbitrary. It is untestable if W is binary, as is the case in many applications. This paper explores the use of shape restrictions, such as monotonicity or convexity, for achieving interval identification of L(g). Economic theory often provides such shape restrictions. This paper shows that they restrict L(g) to an interval whose upper and lower bounds can be obtained by solving linear programming problems. Inference about the identified interval and the functional L(g) can be carried out by using by using the bootstrap. An empirical application illustrates the usefulness of shape restrictions for carrying out nonparametric inference about L(g).

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP15/12

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation

Ereignis
Geistige Schöpfung
(wer)
Freyberger, Joachim
Horowitz, Joel
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2012

DOI
doi:10.1920/wp.cem.2012.1512
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Freyberger, Joachim
  • Horowitz, Joel
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2012

Ähnliche Objekte (12)