Arbeitspapier

Fixed-effect regressions on network data

This paper studies inference on fixed effects in a linear regression model estimated from network data. We derive bounds on the variance of the fixed-effect estimator that uncover the importance of the smallest non-zero eigenvalue of the (normalized) Laplacian of the network and of the degree structure of the network. The eigenvalue is a measure of connectivity, with smaller values indicating less-connected networks. These bounds yield conditions for consistent estimation and convergence rates, and allow to evaluate the accuracy of first-order approximations to the variance of the fixed-effect estimator.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP32/16

Classification
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Large Data Sets: Modeling and Analysis
Subject
fixed effects
graph
Laplacian
network data
variance bound

Event
Geistige Schöpfung
(who)
Jochmans, Koen
Weidner, Martin
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2016

DOI
doi:10.1920/wp.cem.2016.3216
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Jochmans, Koen
  • Weidner, Martin
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2016

Other Objects (12)