Arbeitspapier
Fixed-effect regressions on network data
This paper studies inference on fixed effects in a linear regression model estimated from network data. We derive bounds on the variance of the fixed-effect estimator that uncover the importance of the smallest non-zero eigenvalue of the (normalized) Laplacian of the network and of the degree structure of the network. The eigenvalue is a measure of connectivity, with smaller values indicating less-connected networks. These bounds yield conditions for consistent estimation and convergence rates, and allow to evaluate the accuracy of first-order approximations to the variance of the fixed-effect estimator.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP32/16
- Classification
-
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Large Data Sets: Modeling and Analysis
- Subject
-
fixed effects
graph
Laplacian
network data
variance bound
- Event
-
Geistige Schöpfung
- (who)
-
Jochmans, Koen
Weidner, Martin
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2016
- DOI
-
doi:10.1920/wp.cem.2016.3216
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Jochmans, Koen
- Weidner, Martin
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2016