Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning

Abstract NO 2 O 3 ∘ spatial resolution and daily intervals. NO 2 O 3 R 2 = 0.68 –0.88 and RMSE = 4.77 –8.67 µ g m - 3; R 2 = 0.74 –0.92 and RMSE = 8.53 –13.2 µ g m - 3, respectively). The trained MLP model performed worse than the trained GBT model for both NO 2 O 3 R 2 = 0.46 –0.82 and R 2 = 0.42 –0.9, respectively). NO 2 O 3 NO 2 O 3 NO 2 O 3 NO 2 O 3 NO 2 O 3 NO 2 O 3 NO 2 23 ± 5.3  %) and meteorology-normalized near-surface O 3 1 ± 4.6  %) over 10 major German metropolitan areas when compared to 2019. Finally, our O 3 R 2 = 0.87 –0.94), whereas our NO 2 R 2 = 0.32 –0.64).

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning ; volume:23 ; number:17 ; year:2023 ; pages:10267-10285 ; extent:19
Atmospheric chemistry and physics ; 23, Heft 17 (2023), 10267-10285 (gesamt 19)

Creator
Balamurugan, Vigneshkumar
Chen, Jia
Wenzel, Adrian
Keutsch, Frank N.

DOI
10.5194/acp-23-10267-2023
URN
urn:nbn:de:101:1-2023092104315213654555
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:45 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Balamurugan, Vigneshkumar
  • Chen, Jia
  • Wenzel, Adrian
  • Keutsch, Frank N.

Other Objects (12)