Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning
Abstract NO 2 O 3 ∘ spatial resolution and daily intervals. NO 2 O 3 R 2 = 0.68 –0.88 and RMSE = 4.77 –8.67 µ g m - 3; R 2 = 0.74 –0.92 and RMSE = 8.53 –13.2 µ g m - 3, respectively). The trained MLP model performed worse than the trained GBT model for both NO 2 O 3 R 2 = 0.46 –0.82 and R 2 = 0.42 –0.9, respectively). NO 2 O 3 NO 2 O 3 NO 2 O 3 NO 2 O 3 NO 2 O 3 NO 2 O 3 NO 2 23 ± 5.3 %) and meteorology-normalized near-surface O 3 1 ± 4.6 %) over 10 major German metropolitan areas when compared to 2019. Finally, our O 3 R 2 = 0.87 –0.94), whereas our NO 2 R 2 = 0.32 –0.64).
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning ; volume:23 ; number:17 ; year:2023 ; pages:10267-10285 ; extent:19
Atmospheric chemistry and physics ; 23, Heft 17 (2023), 10267-10285 (gesamt 19)
- Creator
- DOI
-
10.5194/acp-23-10267-2023
- URN
-
urn:nbn:de:101:1-2023092104315213654555
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:45 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Balamurugan, Vigneshkumar
- Chen, Jia
- Wenzel, Adrian
- Keutsch, Frank N.