Neural architecture search for dense prediction tasks in computer vision

Abstract: The success of deep learning in recent years has lead to a rising demand for neural network architecture engineering. As a consequence, neural architecture search (NAS), which aims at automatically designing neural network architectures in a data-driven manner rather than manually, has evolved as a popular field of research. With the advent of weight sharing strategies across architectures, NAS has become applicable to a much wider range of problems. In particular, there are now many publications for dense prediction tasks in computer vision that require pixel-level predictions, such as semantic segmentation or object detection. These tasks come with novel challenges, such as higher memory footprints due to high-resolution data, learning multi-scale representations, longer training times, and more complex and larger neural architectures. In this manuscript, we provide an overview of NAS for dense prediction tasks by elaborating on these novel challenges and surveying ways to address them to ease future research and application of existing methods to novel problems

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
International journal of computer vision. - 131, 7 (2023) , 1784-1807, ISSN: 1573-1405

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber
Mohan, Rohit
Elsken, Thomas
Zela, Arbër
Metzen, Jan Hendrik
Staffler, Benedikt
Brox, Thomas
Valada, Abhinav
Hutter, Frank

DOI
10.1007/s11263-023-01785-y
URN
urn:nbn:de:bsz:25-freidok-2358457
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)