Arbeitspapier

Assessing identifying restrictions in SVAR models

This paper proposes a Bayesian approach to assess if the data support candidate set-identifying restrictions for Vector Autoregressive models. The researcher is uncertain about the validity of some sign restrictions that she is contemplating to use. She therefore expresses her uncertainty with a prior distribution that covers the parameter space both where the restrictions are satisfied and where they are not satisfied. I show that the data determine whether the probability mass in favour of the restrictions increases or not from prior to posterior. Using two applications, I find support for the restrictions used by Baumeister & Hamilton (2015a) in their two-equation model of labor demand and supply, and I find support for the true data generating process in a simulation exercise on the New Keynesian model.

Sprache
Englisch

Erschienen in
Series: DIW Discussion Papers ; No. 1563

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Bayesian Analysis: General
Thema
Identification
Bayesian Econometrics
Sign Restrictions

Ereignis
Geistige Schöpfung
(wer)
Piffer, Michele
Ereignis
Veröffentlichung
(wer)
Deutsches Institut für Wirtschaftsforschung (DIW)
(wo)
Berlin
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Piffer, Michele
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Entstanden

  • 2016

Ähnliche Objekte (12)