Arbeitspapier
Assessing identifying restrictions in SVAR models
This paper proposes a Bayesian approach to assess if the data support candidate set-identifying restrictions for Vector Autoregressive models. The researcher is uncertain about the validity of some sign restrictions that she is contemplating to use. She therefore expresses her uncertainty with a prior distribution that covers the parameter space both where the restrictions are satisfied and where they are not satisfied. I show that the data determine whether the probability mass in favour of the restrictions increases or not from prior to posterior. Using two applications, I find support for the restrictions used by Baumeister & Hamilton (2015a) in their two-equation model of labor demand and supply, and I find support for the true data generating process in a simulation exercise on the New Keynesian model.
- Sprache
-
Englisch
- Erschienen in
-
Series: DIW Discussion Papers ; No. 1563
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Bayesian Analysis: General
- Thema
-
Identification
Bayesian Econometrics
Sign Restrictions
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Piffer, Michele
- Ereignis
-
Veröffentlichung
- (wer)
-
Deutsches Institut für Wirtschaftsforschung (DIW)
- (wo)
-
Berlin
- (wann)
-
2016
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Piffer, Michele
- Deutsches Institut für Wirtschaftsforschung (DIW)
Entstanden
- 2016