Artikel

Gaussian and affine approximation of stochastic diffusion models for interest and mortality rates

In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 1 ; Year: 2013 ; Issue: 3 ; Pages: 81-100 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
forward interest rate
forward mortality rate
life insurance
stochastic diffusion process
Gaussian approximation

Ereignis
Geistige Schöpfung
(wer)
Christiansen, Marcus C.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2013

DOI
doi:10.3390/risks1030081
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Christiansen, Marcus C.
  • MDPI

Entstanden

  • 2013

Ähnliche Objekte (12)