Arbeitspapier

Gaussian approximation of suprema of empirical processes

We develop a new direct approach to approximating suprema of general empirical processes by a sequence of suprema of Gaussian processes, without taking the route of approximating whole empirical processes in the supremum norm. We prove an abstract approximation theorem that is applicable to a wide variety of problems, primarily in statistics. In particular, the bound in the main approximation theorem is non-asymptotic and the theorem does not require uniform boundedness of the class of functions. The proof of the approximation theorem builds on a new coupling inequality for maxima of sums of random vectors, the proof of which depends on an effective use of Stein's method for normal approximation, and some new empirical process techniques. We study applications of this approximation theorem to local empirical processes and series estimation in nonparametric regression where the classes of functions change with the sample size and are not Donsker-type. Importantly, our new technique is able to prove the Gaussian approximation for the supremum type statistics under weak regularity conditions, especially concerning the bandwidth and the number of series functions, in those examples.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP75/13

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Chernozhukov, Victor
Chetverikov, Denis
Kato, Kengo
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2013

DOI
doi:10.1920/wp.cem.2013.7513
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chernozhukov, Victor
  • Chetverikov, Denis
  • Kato, Kengo
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2013

Ähnliche Objekte (12)