Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Abstract In this note, we argue that the outputs of causal discovery algorithms should not usually be considered end results but rather starting points and hypotheses for further study. The incentive to explore this topic came from a recent study by, which gives a good introduction to estimating causal networks in biosphere–atmosphere interaction but confines the scope by investigating the outcome of a single algorithm. We aim to give a broader perspective to this study and to illustrate how not only different algorithms but also different initial states and prior information of possible causal model structures affect the outcome. We provide a proof-of-concept demonstration of how to incorporate expert domain knowledge with causal structure discovery and remark on how to detect and take into account over-fitting and concept drift.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows ; volume:19 ; number:8 ; year:2022 ; pages:2095-2099 ; extent:5
Biogeosciences ; 19, Heft 8 (2022), 2095-2099 (gesamt 5)
- Urheber
-
Mäkelä, Jarmo
Melkas, Laila
Mammarella, Ivan
Nieminen, Tuomo
Chandramouli, Suyog
Savvides, Rafael
Puolamäki, Kai
- DOI
-
10.5194/bg-19-2095-2022
- URN
-
urn:nbn:de:101:1-2022042105161853260563
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:27 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Mäkelä, Jarmo
- Melkas, Laila
- Mammarella, Ivan
- Nieminen, Tuomo
- Chandramouli, Suyog
- Savvides, Rafael
- Puolamäki, Kai