Technical note: Incorporating expert domain knowledge into causal structure discovery workflows

Abstract In this note, we argue that the outputs of causal discovery algorithms should not usually be considered end results but rather starting points and hypotheses for further study. The incentive to explore this topic came from a recent study by, which gives a good introduction to estimating causal networks in biosphere–atmosphere interaction but confines the scope by investigating the outcome of a single algorithm. We aim to give a broader perspective to this study and to illustrate how not only different algorithms but also different initial states and prior information of possible causal model structures affect the outcome. We provide a proof-of-concept demonstration of how to incorporate expert domain knowledge with causal structure discovery and remark on how to detect and take into account over-fitting and concept drift.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows ; volume:19 ; number:8 ; year:2022 ; pages:2095-2099 ; extent:5
Biogeosciences ; 19, Heft 8 (2022), 2095-2099 (gesamt 5)

Urheber
Mäkelä, Jarmo
Melkas, Laila
Mammarella, Ivan
Nieminen, Tuomo
Chandramouli, Suyog
Savvides, Rafael
Puolamäki, Kai

DOI
10.5194/bg-19-2095-2022
URN
urn:nbn:de:101:1-2022042105161853260563
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:27 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)