Causal discovery to understand hot corrosion

Abstract: Gas turbine superalloys experience hot corrosion, driven by factors including corrosive deposit flux, temperature, gas composition, and component material. The full mechanism still needs clarification and research often focuses on laboratory work. As such, there is interest in causal discovery to confirm the significance of factors and identify potential missing causal relationships or codependencies between these factors. The causal discovery algorithm fast causal inference (FCI) has been trialled on a small set of laboratory data, with the outputs evaluated for their significance to corrosion propagation, and compared to existing mechanistic understanding. FCI identified salt deposition flux as the most influential corrosion variable for this limited data set. However, HCl was the second most influential for pitting regions, compared to temperature for more uniformly corroding regions. Thus, FCI generated causal links aligned with literature from a randomised corrosion data set, while also identifying the presence of two different degradation modes in operation.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Causal discovery to understand hot corrosion ; day:12 ; month:02 ; year:2024 ; extent:13
Materials and corrosion ; (12.02.2024) (gesamt 13)

Urheber
Varghese, Akhil
Arana‐Catania, Miguel
Mori, Stefano
Encinas‐Oropesa, Adriana
Sumner, Joy

DOI
10.1002/maco.202314240
URN
urn:nbn:de:101:1-2024021314195237412546
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:40 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Varghese, Akhil
  • Arana‐Catania, Miguel
  • Mori, Stefano
  • Encinas‐Oropesa, Adriana
  • Sumner, Joy

Ähnliche Objekte (12)