Heegner modules and elliptic curves

Heegner points on both modular curves and elliptic curves over global fields of any characteristic is the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields, this conjecture being equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields. TOC:Preface.- 1. Introduction.- 2. Preliminaries.- 3. Bruhat-Tits trees with complex multiplication.- 4. Heegner sheaves.- 5. The Heegner module.- 6. Cohomology of the Heegner module.- 7. Finiteness of the Tate-Shafarevich groups.- Appendix A. Rigid analytic modular forms.- Appendix B. Automorphic forms and elliptic curves over function fields.- References.- Index.

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISBN
9783540222903
3540222901
Dimensions
24 cm
Extent
X, 517 S.
Language
Englisch
Notes
Literaturverz. S. 507 - 510

Bibliographic citation
Lecture notes in mathematics ; 1849

Classification
Mathematik
Keyword
Elliptische Kurve
Heegner-Punkt
Drinfeld-Modul

Event
Veröffentlichung
(where)
Berlin, Heidelberg, New York
(who)
Springer
(when)
2004
Creator
Brown, Martin L.

Table of contents
Rights
Bei diesem Objekt liegt nur das Inhaltsverzeichnis digital vor. Der Zugriff darauf ist unbeschränkt möglich.
Last update
11.03.2025, 12:25 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Brown, Martin L.
  • Springer

Time of origin

  • 2004

Other Objects (12)