Arbeitspapier
Recovering latent variables by matching
We propose an optimal-transport-based matching method to nonparametrically estimate linear models with independent latent variables. The method consists in generating pseudo-observations from the latent variables, so that the Euclidean distance between the model's predictions and their matched counterparts in the data is minimized. We show that our nonparametric estimator is consistent, and we document that it performs well in simulated data. We apply this method to study the cyclicality of permanent and transitory income shocks in the Panel Study of Income Dynamics. We find that the dispersion of income shocks is approximately acyclical, whereas the skewness of permanent shocks is procyclical. By comparison, we find that the dispersion and skewness of shocks to hourly wages vary little with the business cycle.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP2/20
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
- Subject
-
Latent variables
nonparametric estimation
matching
factor models
optimaltransport
income dynamics
- Event
-
Geistige Schöpfung
- (who)
-
Arellano, Manuel
Bonhomme, Stéphane
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2020
- DOI
-
doi:10.1920/wp.cem.2020.220
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Arellano, Manuel
- Bonhomme, Stéphane
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2020