Artikel

On the forecast combination puzzle

It is often reported in the forecast combination literature that a simple average of candidate forecasts is more robust than sophisticated combining methods. This phenomenon is usually referred to as the “forecast combination puzzle”. Motivated by this puzzle, we explore its possible explanations, including high variance in estimating the target optimal weights (estimation error), invalid weighting formulas, and model/candidate screening before combination. We show that the existing understanding of the puzzle should be complemented by the distinction of different forecast combination scenarios known as combining for adaptation and combining for improvement. Applying combining methods without considering the underlying scenario can itself cause the puzzle. Based on our new understandings, both simulations and real data evaluations are conducted to illustrate the causes of the puzzle. We further propose a multi-level AFTER strategy that can integrate the strengths of different combining methods and adapt intelligently to the underlying scenario. In particular, by treating the simple average as a candidate forecast, the proposed strategy is shown to reduce the heavy cost of estimation error and, to a large extent, mitigate the puzzle.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 7 ; Year: 2019 ; Issue: 3 ; Pages: 1-26 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
combining for adaptation
combining for improvement
model selection
multi-level AFTER
structural break

Ereignis
Geistige Schöpfung
(wer)
Qian, Wei
Rolling, Craig A.
Cheng, Gang
Yang, Yuhong
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/econometrics7030039
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Qian, Wei
  • Rolling, Craig A.
  • Cheng, Gang
  • Yang, Yuhong
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)