Arbeitspapier
Predictive inference on finite populations segmented in planned and unplanned domains
In this paper, we develop a new model-based method to inference on totals and averages of nite populations segmented in planned domains or strata. Within each stratum, we decompose the total as the sum of its sampled and unsampled parts, making inference on the unsampled part using Bayesian nonparametric methods. Additionally, we extend this method to make inference on totals of unplanned domains simultaneously modelling, within each stratum, the underlying uncertainty about the composition of the population and the totals across unplanned domains. Making inference on population averages is straightforward in both frameworks. To illustrate these methods, we develop a simulation exercise and evaluate the uncertainty surrounding the gender wage gap in Mexico.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers ; No. 2014-04
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Classification Discontinued 2008. See C83.
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Data Collection and Data Estimation Methodology; Computer Programs: Other Computer Software
Wage Level and Structure; Wage Differentials
- Thema
-
survey methods
robustness
species-sampling models
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Martínez-Ovando, Juan Carlos
Olivares-Guzmán, Sergio I.
Roldán-Rodríguez, Adriana
- Ereignis
-
Veröffentlichung
- (wer)
-
Banco de México
- (wo)
-
Ciudad de México
- (wann)
-
2014
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Martínez-Ovando, Juan Carlos
- Olivares-Guzmán, Sergio I.
- Roldán-Rodríguez, Adriana
- Banco de México
Entstanden
- 2014