Arbeitspapier

Predictive inference on finite populations segmented in planned and unplanned domains

In this paper, we develop a new model-based method to inference on totals and averages of nite populations segmented in planned domains or strata. Within each stratum, we decompose the total as the sum of its sampled and unsampled parts, making inference on the unsampled part using Bayesian nonparametric methods. Additionally, we extend this method to make inference on totals of unplanned domains simultaneously modelling, within each stratum, the underlying uncertainty about the composition of the population and the totals across unplanned domains. Making inference on population averages is straightforward in both frameworks. To illustrate these methods, we develop a simulation exercise and evaluate the uncertainty surrounding the gender wage gap in Mexico.

Sprache
Englisch

Erschienen in
Series: Working Papers ; No. 2014-04

Klassifikation
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Classification Discontinued 2008. See C83.
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Data Collection and Data Estimation Methodology; Computer Programs: Other Computer Software
Wage Level and Structure; Wage Differentials
Thema
survey methods
robustness
species-sampling models

Ereignis
Geistige Schöpfung
(wer)
Martínez-Ovando, Juan Carlos
Olivares-Guzmán, Sergio I.
Roldán-Rodríguez, Adriana
Ereignis
Veröffentlichung
(wer)
Banco de México
(wo)
Ciudad de México
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Martínez-Ovando, Juan Carlos
  • Olivares-Guzmán, Sergio I.
  • Roldán-Rodríguez, Adriana
  • Banco de México

Entstanden

  • 2014

Ähnliche Objekte (12)