RPG acts as a central determinant for infectosome formation and cellular polarization during intracellular rhizobial infections

Abstract: Host-controlled intracellular accommodation of nitrogen-fixing bacteria is essential for the establishment of a functional Root Nodule Symbiosis (RNS). In many host plants, this occurs via transcellular tubular structures (infection threads - ITs) that extend across cell layers via polar tip-growth. Comparative phylogenomic studies have identified RPG (RHIZOBIUM-DIRECTED POLAR GROWTH) among the critical genetic determinants for bacterial infection. In Medicago truncatula, RPG is required for effective IT progression within root hairs but the cellular and molecular function of the encoded protein remains elusive. Here, we show that RPG resides in the protein complex formed by the core endosymbiotic components VAPYRIN (VPY) and LUMPY INFECTION (LIN) required for IT polar growth, co-localizes with both VPY and LIN in IT tip- and perinuclear-associated puncta of M. truncatula root hairs undergoing infection and is necessary for VPY recruitment into these structures. Fluorescence Lifetime Imaging Microscopy (FLIM) of phosphoinositide species during bacterial infection revealed that functional RPG is required to sustain strong membrane polarization at the advancing tip of the IT. In addition, loss of RPG functionality alters the cytoskeleton-mediated connectivity between the IT tip and the nucleus and affects the polar secretion of the cell wall modifying enzyme NODULE PECTATE LYASE (NPL). Our results integrate RPG into a core host machinery required to support symbiont accommodation, suggesting that its occurrence in plant host genomes is essential to co-opt a multimeric protein module committed to endosymbiosis to sustain IT-mediated bacterial infection

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
eLife. - 12 (2023) , e80741, ISSN: 2050-084X

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2023
Creator
Lace, Beatrice
Su, Chao
Invernot Perez, Daniel
Rodríguez-Franco, Marta
Vernie, Tatiana
Batzenschlager, Morgane
Egli, Sabrina
Liu, Cheng-Wu
Ott, Thomas

DOI
10.7554/elife.80741
URN
urn:nbn:de:bsz:25-freidok-2364571
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:55 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2023

Other Objects (12)