Sensitivity analysis for causal effects with generalized linear models

Abstract: Residual confounding is a common source of bias in observational studies. In this article, we build upon a series of sensitivity analyses methods for residual confounding developed by Brumback et al. and Chiba whose sensitivity parameters are constructed to quantify deviation from conditional exchangeability, given measured confounders. These sensitivity parameters are combined with the observed data to produce a “bias-corrected” estimate of the causal effect of interest. We provide important generalizations of these sensitivity analyses, by allowing for arbitrary exposures and a wide range of different causal effect measures, through the specification of the target causal effect as a parameter in a generalized linear model with the arbitrary link function. We show how our generalized sensitivity analysis can be easily implemented with standard software, and how its sensitivity parameters can be calibrated against measured confounders. We demonstrate our sensitivity analysis with an application to publicly available data from a cohort study of behavior patterns and coronary heart disease.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Sensitivity analysis for causal effects with generalized linear models ; volume:10 ; number:1 ; year:2022 ; pages:441-479 ; extent:39
Journal of causal inference ; 10, Heft 1 (2022), 441-479 (gesamt 39)

Urheber
Sjölander, Arvid
Gabriel, Erin E.
Ciocănea-Teodorescu, Iuliana

DOI
10.1515/jci-2022-0040
URN
urn:nbn:de:101:1-2022121313074601649603
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:26 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Sjölander, Arvid
  • Gabriel, Erin E.
  • Ciocănea-Teodorescu, Iuliana

Ähnliche Objekte (12)