Arbeitspapier

Analytic Decision Rules for Financial Stochastic Programs

Contemporary financial stochastic programs typically involve a trade-offbetween return and (downside)-risk. Using stochastic programming we characterize analytically (rather than numerically) the optimal decisions that follow from characteristic single-stage and multi-stage versions of such programs. The solutions are presented in the form of decision rules with a clear-cut economic interpretation. This facilitates transparency and ease of communication with decision makers. The optimal decision rules exhibit switching behavior in terms of relevant state variables like the assets to liabilities ratio. We find that the model can be tuned easily using Value-at-Risk (VaR) related benchmarks. In the multi-stage setting, we formally prove that the optimal solution consists of a sequence of myopic (single-stage) decisions with risk-aversion increasing over time. The optimal decision rules in the dynamic setting therefore exhibit identical features as in the static context.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 00-041/2

Klassifikation
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Portfolio Choice; Investment Decisions
Pension Funds; Non-bank Financial Institutions; Financial Instruments; Institutional Investors
Thema
downside-risk
stochastic programming
asset-allocation
value-at-risk
time diversification
asset/liability management
Portfolio-Management
Mathematische Optimierung
Theorie

Ereignis
Geistige Schöpfung
(wer)
Siegmann, Arjen H.
Lucas, André
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2000

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Siegmann, Arjen H.
  • Lucas, André
  • Tinbergen Institute

Entstanden

  • 2000

Ähnliche Objekte (12)