Benzyl Ammonium Carbamates Undergo Two‐Step Linker Cleavage and Improve the Properties of Antibody Conjugates

Abstract: Targeted payload delivery strategies, such as antibody‐drug conjugates (ADCs), have emerged as important therapeutics. Although considerable efforts have been made in the areas of antibody engineering and labeling methodology, improving the overall physicochemical properties of the linker/payload combination remains an important challenge. Here we report an approach to create an intrinsically hydrophilic linker domain. We find that benzyl α‐ammonium carbamates (BACs) undergo tandem 1,6–1,2‐elimination to release secondary amines. Using a fluorogenic hemicyanine as a model payload component, we show that a zwitterionic BAC linker improves labeling efficiency and reduces antibody aggregation when compared to a commonly used para‐amino benzyl (PAB) linker as well as a cationic BAC. Cellular and in vivo fluorescence imaging studies demonstrate that the model payload is specifically released in antigen‐expressing cells and tumors. The therapeutic potential of the BAC linker strategy was assessed using an MMAE payload, a potent microtubule‐disrupting agent frequently used for ADC applications. The BAC‐MMAE combination enhances labeling efficiency and cellular toxicity when compared to the routinely used PAB‐Val‐Cit ADC analogue. Broadly, this strategy provides a general approach to mask payload hydrophobicity and improve the properties of targeted agents.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Benzyl Ammonium Carbamates Undergo Two‐Step Linker Cleavage and Improve the Properties of Antibody Conjugates ; day:18 ; month:12 ; year:2024 ; extent:8
Angewandte Chemie / International edition. International edition ; (18.12.2024) (gesamt 8)

Creator
Li, Xiaoyi
Patel, Nimit L.
Kalen, Joseph
Schnermann, Martin J.

DOI
10.1002/anie.202417651
URN
urn:nbn:de:101:1-2412191329307.381291877437
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:26 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Li, Xiaoyi
  • Patel, Nimit L.
  • Kalen, Joseph
  • Schnermann, Martin J.

Other Objects (12)