Arbeitspapier
Outlier robust small area estimation under spatial correlation
Modern systems of official statistics require the estimation and publication of business statistics for disaggregated domains, for example, industry domains and geographical regions. Outlier robust methods have proven to be useful for small area estimation. Recently proposed outlier robust modelbased small area methods assume, however, uncorrelated random effects. Spatial dependencies, resulting from similar industry domains or geographic regions, often occur. In this paper we propose outlier robust small area methodology that allows for the presence of spatial correlation in the data. In particular, we present a robust predictive methodology that incorporates the potential spatial impact from other areas (domains) on the small area (domain) of interest. We further propose two parametric bootstrap methods for estimating the mean-squared error. Simulations indicate that the proposed methodology may lead to efficiency gains. The paper concludes with an illustrative application by using business data for estimating average labour costs in Italian provinces.
- Language
-
Englisch
- Bibliographic citation
-
Series: Diskussionsbeiträge ; No. 2015/8
- Classification
-
Wirtschaft
- Subject
-
bias correction
projective and predictive estimators
spatial correlation
business surveys
- Event
-
Geistige Schöpfung
- (who)
-
Schmid, Timo
Tzavidis, Nikos
Münnich, Ralf
Chambers, Ray
- Event
-
Veröffentlichung
- (who)
-
Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft
- (where)
-
Berlin
- (when)
-
2015
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Schmid, Timo
- Tzavidis, Nikos
- Münnich, Ralf
- Chambers, Ray
- Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft
Time of origin
- 2015