Tobias Huber
Has participated in:
-
Towards a combined local and global explanation framework for deep reinforcement learning agents with visual input: novel methods and insights from human evaluation
-
Tiefes bestärkendes Lernen: Grundlagen, Approximationseigenschaft und Implementierung multimodaler Erklärungen
-
Integrating policy summaries with reward decomposition for explaining reinforcement learning agents
-
Benchmarking perturbation-based saliency maps for explaining Atari agents