Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach

Abstract P D T. Meteorological modules of hydro-meteorological models used for the aforementioned applications therefore need to be capable of simulating such reference rainfall scenarios. This paper aims to address three research gaps: (i) the discrepancy between standard methods for defining reference precipitation and the strong multi-scale intermittency of precipitation, (ii) a lack of procedures to adapt multi-fractal precipitation modelling to specified partial statistical references, and (iii) scarcity of proper multi-scale tools to quantitatively estimate the effectiveness of such simulation procedures. Therefore, it proposes (i) a procedure based on extreme non-Gaussian statistics in two scaling regimes due to earth's finite size to tackle multi-scale intermittency head on, (ii) a renormalization technique to make simulations comply with the aforementioned partial statistical references, and (iii) multi-scale metrics to compare simulated rainfall time series with those observed. While the first two proposals are utilized to simulate reference rainfall scenarios for three regions (Paris, Nantes, and Aix-en-Provence) in France that are characterized by different climates, the last one is used to validate them. The scope of this paper is that the baseline precipitation scenarios simulated here can be used as realistic inputs into hydrological models for applications such as the optimal design of storm-water management infrastructure, especially green roofs. Although only purely temporal simulations are considered, this approach could possibly be generalized to space–time as well.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach ; volume:26 ; number:24 ; year:2022 ; pages:6477-6491 ; extent:15
Hydrology and earth system sciences ; 26, Heft 24 (2022), 6477-6491 (gesamt 15)

Creator
Ramanathan, Arun
Versini, Pierre-Antoine
Schertzer, Daniel
Perrin, Remi
Sindt, Lionel
Tchiguirinskaia, Ioulia

DOI
10.5194/hess-26-6477-2022
URN
urn:nbn:de:101:1-2022122904231382495428
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:26 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Ramanathan, Arun
  • Versini, Pierre-Antoine
  • Schertzer, Daniel
  • Perrin, Remi
  • Sindt, Lionel
  • Tchiguirinskaia, Ioulia

Other Objects (12)