Arbeitspapier

Probability measures on product spaces with uniform metrics

For a countable product of complete separable metric spaces with a topology induced by a uniform metric, the set of Borel probability measures coincides with the set of completions of probability measures on the product o-algebra. Whereas the product space with the uniform metric is non-separable, the support of any Bofrel measure is separable, and the topology of weak convergence on the space of Borel measures is metrizable by both the Prohorov metric and the bounded Lipschitz metric.

Sprache
Englisch

Erschienen in
Series: Preprints of the Max Planck Institute for Research on Collective Goods ; No. 2017/6

Klassifikation
Wirtschaft
Mathematical Methods
Noncooperative Games
Thema
Borel measures
product spaces with uniform metrics
completions of product o-algebras
universal type space
separability of supports
metrizability of weak convergence

Ereignis
Geistige Schöpfung
(wer)
Hellwig, Martin
Ereignis
Veröffentlichung
(wer)
Max Planck Institute for Research on Collective Goods
(wo)
Bonn
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hellwig, Martin
  • Max Planck Institute for Research on Collective Goods

Entstanden

  • 2017

Ähnliche Objekte (12)