Artificial Scanning Electron Microscopy Images Created by Generative Adversarial Networks from Simulated Particle Assemblies

Particle assemblies created by software package Blender are converted into artificial scanning electron micrographs (SEM) with a generative adversarial network (GAN). The introduction of height maps (i.e., surface topography or relief structure) considerably enhances the quality of the artificial SEM images by providing 3D information on the input data. These artificial images serve as input data to train a convolutional neural network (CNN) to identify and classify nanoparticles. Although the performance of the CNN trained with artificial SEM images is slightly inferior to the same CNN trained with real SEM images, this offers a pathway to create training data for segmentation and classification networks for SEM image analysis by deep learning algorithms.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Artificial Scanning Electron Microscopy Images Created by Generative Adversarial Networks from Simulated Particle Assemblies ; day:06 ; month:04 ; year:2023 ; extent:9
Advanced intelligent systems ; (06.04.2023) (gesamt 9)

Urheber
Bals, Jonas
Epple, Matthias

DOI
10.1002/aisy.202300004
URN
urn:nbn:de:101:1-2023040615321646404732
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:52 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)