Application and optimization of machine learning algorithms for optical character recognition in complex scenarios

Abstract: In the era of artificial intelligence, the technology of optical character recognition under complex backgrounds has become particularly important. This article investigated how machine learning algorithms can improve the accuracy of text recognition in complex scenarios. By analyzing algorithms such as scale-invariant feature transform, K-means clustering, and support vector machine, a system was constructed to address the challenges of text recognition under complex backgrounds. Experimental results show that the proposed algorithm achieves 7.66% higher accuracy than traditional algorithms, and the built system is fast, powerful, and highly satisfactory to users, with a 13.6% difference in results between the two groups using different methods. This indicates that the method proposed in this study can effectively meet the needs of complex text recognition, significantly improving recognition efficiency and user satisfaction.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Application and optimization of machine learning algorithms for optical character recognition in complex scenarios ; volume:34 ; number:1 ; year:2025 ; extent:14
Journal of intelligent systems ; 34, Heft 1 (2025) (gesamt 14)

Urheber
Liu, Liming
Yang, Dexin
Chen, Juntao

DOI
10.1515/jisys-2023-0307
URN
urn:nbn:de:101:1-2503110612376.999279637736
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:20 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Liu, Liming
  • Yang, Dexin
  • Chen, Juntao

Ähnliche Objekte (12)