Binet's second formula, Hermite's generalization, and two related identities

Abstract: Legendre was the first to evaluate two well-known integrals involving sines and exponentials. One of these integrals can be used to prove Binet’s second formula for the logarithm of the gamma function. Here, we show that the other integral leads to a specific case of Hermite’s generalization of Binet’s formula. From the analogs of Legendre’s integrals, with sines replaced by cosines, we obtain two integration identities involving logarithms and trigonometric functions. Using these identities, we then subsequently derive generalizations of Binet’s and Hermite’s formulas involving the integral of a complex logarithm.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Binet's second formula, Hermite's generalization, and two related identities ; volume:21 ; number:1 ; year:2023 ; extent:15
Open mathematics ; 21, Heft 1 (2023) (gesamt 15)

Creator
Boyack, Rufus

DOI
10.1515/math-2022-0568
URN
urn:nbn:de:101:1-2023040314030519242418
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:53 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Boyack, Rufus

Other Objects (12)