Size effects in numerical homogenization of polycrystalline silicon

Abstract: A current topic in the photovoltaic industry is the analysis and evaluation of possible structural and material properties. This requires the effective material characteristics of polycrystalline silicon, which is an important component for the functional performance of the photovoltaic modules in use. Since this assessment is associated with high costs, it is to be carried out already in the product development process. Due to very thin silicon layers, the effect of the layer thickness on the effective material characteristics has to be investigated (see). In this work, a procedure to determine these characteristic values is listed to investigate the size effect on different film thicknesses of this material (see). With the knowledge of the properties of the silicon single crystal with its cubic symmetry on the micro level, a homogenization of the properties to the macro level can be done. The polycrystal structure with a cubic sample geometry forms the macro level. This structure is now cut into thinning layers for investigation. The open‐source software Neper is used to create the crystal structure and the inter‐connectivity for this purpose. With the help of Matlab, this information is passed on to the finite element program Abaqus, where the results are evaluated after an elastic calculation using Python. The focus is on the expected change in material properties as a function of the layer thickness.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Size effects in numerical homogenization of polycrystalline silicon ; day:14 ; month:09 ; year:2023 ; extent:8
Proceedings in applied mathematics and mechanics ; (14.09.2023) (gesamt 8)

Creator
Weber, Martin
Aßmus, Marcus
Glüge, Rainer
von Zabiensky, Max
Altenbach, Holm

DOI
10.1002/pamm.202300221
URN
urn:nbn:de:101:1-2023091415112625677018
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:02 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Weber, Martin
  • Aßmus, Marcus
  • Glüge, Rainer
  • von Zabiensky, Max
  • Altenbach, Holm

Other Objects (12)