Two‐photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures

Abstract: Fused silica glass is the material of choice for many high‐performance components in optics due to its high optical transparency combined with its high thermal, chemical, and mechanical stability. Especially, the generation of fused silica microstructures is of high interest for microoptical and biomedical applications. Direct laser writing (DLW) is a suitable technique for generating such devices, as it enables nearly arbitrary structuring down to the sub‐micrometer level. In this work, true 3D structuring of transparent fused silica glass using DLW with tens of micrometer resolution and a surface roughness of Ra ≈ 6 nm is demonstrated. The process uses a two‐photon curable silica nanocomposite resin that can be structured by DLW, with the printout being convertible to transparent fused silica glass via thermal debinding and sintering. This technology will enable a plethora of applications from next‐generation optics and photonics to microfluidic and biomedical applications with resolutions on the scale of tens of micrometers

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Advanced materials. - 33, 9 (2021) , 2006341, ISSN: 1521-4095

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2021
Creator

DOI
10.1002/adma.202006341
URN
urn:nbn:de:bsz:25-freidok-1941520
Rights
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:55 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2021

Other Objects (12)