Improving multi-object detection and tracking with deep learning, DeepSORT, and frame cancellation techniques

Abstract: Multi-object detection and tracking is a crucial and extensively researched field in image processing and computer vision. It involves predicting complete tracklets for many objects in a video clip concurrently. This article uses the frame cancellation technique to reduce the computation time required for deep learning and DeepSORT (for any version of the YOLO detector) coupled with DeepSORT algorithm techniques. This novel technique implements a different number of frame cancellations, starting from one frame and continuing until nine frame cancellations, tabling the result of each frame cancellation against the overall system performance for each frame cancellation. The proposed method worked very well; there was a small drop in the average tracking accuracy after the third frame rate cancellation, but the execution time was much faster.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Improving multi-object detection and tracking with deep learning, DeepSORT, and frame cancellation techniques ; volume:14 ; number:1 ; year:2024 ; extent:18
Open engineering ; 14, Heft 1 (2024) (gesamt 18)

Urheber
Razak, Rashad N.
Abdullah, Hadeel N.

DOI
10.1515/eng-2024-0056
URN
urn:nbn:de:101:1-2409261557593.286106394344
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Razak, Rashad N.
  • Abdullah, Hadeel N.

Ähnliche Objekte (12)