Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth

Standort
Deutsche Nationalbibliothek Frankfurt am Main
ISSN
1741-7015
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
online resource.

Erschienen in
Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth ; volume:20 ; number:1 ; day:28 ; month:9 ; year:2022 ; pages:1-21 ; date:12.2022
BMC medicine ; 20, Heft 1 (28.9.2022), 1-21, 12.2022

Urheber
Abraham, Abin
Le, Brian
Kosti, Idit
Straub, Peter
Velez-Edwards, Digna R.
Davis, Lea K.
Newton, J. M.
Muglia, Louis J.
Rokas, Antonis
Bejan, Cosmin A.
Sirota, Marina
Capra, John A.
Beteiligte Personen und Organisationen
SpringerLink (Online service)

DOI
10.1186/s12916-022-02522-x
URN
urn:nbn:de:101:1-2022112221211343166387
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Abraham, Abin
  • Le, Brian
  • Kosti, Idit
  • Straub, Peter
  • Velez-Edwards, Digna R.
  • Davis, Lea K.
  • Newton, J. M.
  • Muglia, Louis J.
  • Rokas, Antonis
  • Bejan, Cosmin A.
  • Sirota, Marina
  • Capra, John A.
  • SpringerLink (Online service)

Ähnliche Objekte (12)