MATHEMATICAL AND PHYSICAL APPROACHES TO INFER ABSOLUTE ZENITH WET DELAYS FROM DOUBLE DIFFERENTIAL INTERFEROMETRIC OBSERVATIONS USING ERA5 ATMOSPHERIC REANALYSIS

Abstract. Atmospheric water vapor (WV) is one of the driving constituents of the atmosphere. The modelling and forecasting of WV and derived quantities like precipitable water is reliable on regional scales but challenging on small scales because of its high spatial and temporal variation. Interferometric synthetic aperture radar (InSAR) can be exploited to retrieve integrated atmospheric water vapor (IWV) from path delay observations along the radar line of sight. InSAR-derived IWV maps feature a very high spatial resolution but the double-differential interferometric observations only provide changes of IWV between acquisition times and with respect to a certain spatial reference. In this study we present a method to derive the absolute IWV by combining ERA5 numerical weather model data with differential path delay observations from InSAR time series. We propose different functional approaches to merge the regional trend of WV from ERA5 with the high resolution IWV signal from InSAR. We apply this to a Sentinel-1 Persistent Scatterer InSAR time series in the Upper Rhine Graben and validate against IWV observations at GNSS stations of the Upper Rhine Graben Network.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
MATHEMATICAL AND PHYSICAL APPROACHES TO INFER ABSOLUTE ZENITH WET DELAYS FROM DOUBLE DIFFERENTIAL INTERFEROMETRIC OBSERVATIONS USING ERA5 ATMOSPHERIC REANALYSIS ; volume:XLVIII-M-1-2023 ; year:2023 ; pages:153-159 ; extent:7
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-M-1-2023 (2023), 153-159 (gesamt 7)

Urheber
Kamm, B.
Schenk, A.
Yuan, P.
Hinz, S.

DOI
10.5194/isprs-archives-XLVIII-M-1-2023-153-2023
URN
urn:nbn:de:101:1-2023042708155641627235
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:50 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Kamm, B.
  • Schenk, A.
  • Yuan, P.
  • Hinz, S.

Ähnliche Objekte (12)