The propagation of Hermite–Gauss wave packets in optics and quantum mechanics

Abstract: The two-dimensional paraxial equation of optics and the two-dimensional time-dependent Schrödinger equation, derived as approximations of the three-dimensional Helmholtz equation and the three-dimensional time-independent Schrödinger equation, respectively, are identical. Here the free propagation in space and time of Hermite–Gauss wave packets (optics) or harmonic oscillator eigenfunctions (quantum mechanics) is examined in detail. The Gouy phase is shown to be a dynamic phase, appearing as the integral of the adiabatic eigenfrequency or eigenenergy. The wave packets propagate adiabatically in that at each space or time point they are solutions of the instantaneous harmonic problem. In both cases, it is shown that the form of the wave function is unchanged along the loci of the normals to wave fronts. This invariance along such trajectories is connected to the propagation of the invariant amplitude of the corresponding free wave number (optics) or momentum (quantum mechanics) wave packets. It is shown that the van Vleck classical density of trajectories function appears in the wave function amplitude over the complete trajectory. A transformation to the co-moving frame along a trajectory gives a constant wave function multiplied by a simple energy or frequency phase factor. The Gouy phase becomes the proper time in this frame

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Natural sciences. - 4, 1 (2024) , e20230012, ISSN: 2698-6248

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber

DOI
10.1002/ntls.20230012
URN
urn:nbn:de:bsz:25-freidok-2412419
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:31 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)