Konferenzschrift | Kongress

Statistical learning theory and stochastic optimization

Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use asis often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools,that will stimulate further studies and results. TOC:Universal Lossless Data Compression.- Links Between Data Compression and Statistical Estimation.- Non Cumulated Mean Risk.- Gibbs Estimators.- Randomized Estimators and Empirical Complexity.- Deviation Inequalities.- Markov Chains with Exponential Transitions.- References.- Index.

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISBN
9783540225720
3540225722
Dimensions
24 cm
Extent
VIII, 272 S.
Language
Englisch
Notes
graph. Darst.
Literaturangaben

Bibliographic citation
Lecture notes in mathematics ; Vol. 1851

Classification
Mathematik
Keyword
Mathematische Lerntheorie
Stochastische Optimierung

Event
Veröffentlichung
(where)
Berlin, Heidelberg, New York
(who)
Springer
(when)
2004
Contributor
Catoni, Olivier
Picard, Jean
Ecole d'Eté de Probabilités (31 : 2001 : Saint-Flour)

Table of contents
Rights
Bei diesem Objekt liegt nur das Inhaltsverzeichnis digital vor. Der Zugriff darauf ist unbeschränkt möglich.
Last update
11.06.2025, 2:15 PM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzschrift
  • Kongress

Associated

  • Catoni, Olivier
  • Picard, Jean
  • Ecole d'Eté de Probabilités (31 : 2001 : Saint-Flour)
  • Springer

Time of origin

  • 2004

Other Objects (12)