Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra

Abstract: Deep learning methods for the prediction of molecular excitation spectra are presented. For the example of the electronic density of states of 132k organic molecules, three different neural network architectures: multilayer perceptron (MLP), convolutional neural network (CNN), and deep tensor neural network (DTNN) are trained and assessed. The inputs for the neural networks are the coordinates and charges of the constituent atoms of each molecule. Already, the MLP is able to learn spectra, but the root mean square error (RMSE) is still as high as 0.3 eV. The learning quality improves significantly for the CNN (RMSE = 0.23 eV) and reaches its best performance for the DTNN (RMSE = 0.19 eV). Both CNN and DTNN capture even small nuances in the spectral shape. In a showcase application of this method, the structures of 10k previously unseen organic molecules are scanned and instant spectra predictions are obtained to identify molecules for potential applications.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra ; volume:6 ; number:9 ; year:2019 ; extent:7
Advanced science ; 6, Heft 9 (2019) (gesamt 7)

Urheber
Ghosh, Kunal
Stuke, Annika
Todorović, Milica
Jørgensen, Peter Bjørn
Schmidt, Mikkel N.
Vehtari, Aki
Rinke, Patrick

DOI
10.1002/advs.201801367
URN
urn:nbn:de:101:1-2022072510154611576295
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Ghosh, Kunal
  • Stuke, Annika
  • Todorović, Milica
  • Jørgensen, Peter Bjørn
  • Schmidt, Mikkel N.
  • Vehtari, Aki
  • Rinke, Patrick

Ähnliche Objekte (12)