A bilinear identification‐modeling framework from time domain data

Abstract: An ever‐increasing need for improving the accuracy includes more involved and detailed features, thus inevitably leading to larger‐scale dynamical systems [1]. To overcome this problem, efficient finite methods heavily rely on model reduction. One of the main approaches to model reduction of both linear and nonlinear systems is by means of interpolation. The Loewner framework is a direct data‐driven method able to identify and reduce models derived directly from measurements. For measured data in the frequency domain, the Loewner framework is well established in linear case [2] while it has already extended to nonlinear [6]. On the other hand in the case of time domain data, the Loewner framework was already applied for approximating linear models [3]. In this study, an algorithm which uses time domain data for nonlinear (bilinear) system reduction and identification is presented.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A bilinear identification‐modeling framework from time domain data ; volume:19 ; number:1 ; year:2019 ; extent:2
Proceedings in applied mathematics and mechanics ; 19, Heft 1 (2019) (gesamt 2)

Urheber
Karachalios, Dimitrios S.
Gosea, Ion Victor
Antoulas, Athanasios C.

DOI
10.1002/pamm.201900246
URN
urn:nbn:de:101:1-2022072208242200753966
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:29 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Karachalios, Dimitrios S.
  • Gosea, Ion Victor
  • Antoulas, Athanasios C.

Ähnliche Objekte (12)