Arbeitspapier

Density Forecasts with Midas Models

In this paper we derive a general parametric bootstrapping approach to compute density forecasts for various types of mixed-data sampling (MIDAS) regressions. We consider both classical and unrestricted MIDAS regressions with and without an autoregressive component. First, we compare the forecasting performance of the different MIDAS models in Monte Carlo simulation experiments. We find that the results in terms of point and density forecasts are coherent. Moreover, the results do not clearly indicate a superior performance of one of the models under scrutiny when the persistence of the low frequency variable is low. Some differences are instead more evident when the persistence is high, for which the ARMIDAS and the AR-U-MIDAS produce better forecasts. Second, in an empirical exercise we evaluate density forecasts for quarterly US output growth, exploiting information from typical monthly series. We find that MIDAS models applied to survey data provide accurate and timely density forecasts.

ISBN
978-82-7553-818-3
Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 10/2014

Klassifikation
Wirtschaft
Bayesian Analysis: General
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
mixed data sampling
density forecasts
nowcasting

Ereignis
Geistige Schöpfung
(wer)
Aastveit, Knut Are
Foroni, Claudia
Ravazzolo, Francesco
Ereignis
Veröffentlichung
(wer)
Norges Bank
(wo)
Oslo
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Aastveit, Knut Are
  • Foroni, Claudia
  • Ravazzolo, Francesco
  • Norges Bank

Entstanden

  • 2014

Ähnliche Objekte (12)