Arbeitspapier
Density Forecasts with Midas Models
In this paper we derive a general parametric bootstrapping approach to compute density forecasts for various types of mixed-data sampling (MIDAS) regressions. We consider both classical and unrestricted MIDAS regressions with and without an autoregressive component. First, we compare the forecasting performance of the different MIDAS models in Monte Carlo simulation experiments. We find that the results in terms of point and density forecasts are coherent. Moreover, the results do not clearly indicate a superior performance of one of the models under scrutiny when the persistence of the low frequency variable is low. Some differences are instead more evident when the persistence is high, for which the ARMIDAS and the AR-U-MIDAS produce better forecasts. Second, in an empirical exercise we evaluate density forecasts for quarterly US output growth, exploiting information from typical monthly series. We find that MIDAS models applied to survey data provide accurate and timely density forecasts.
- ISBN
-
978-82-7553-818-3
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 10/2014
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
- Thema
-
mixed data sampling
density forecasts
nowcasting
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Aastveit, Knut Are
Foroni, Claudia
Ravazzolo, Francesco
- Ereignis
-
Veröffentlichung
- (wer)
-
Norges Bank
- (wo)
-
Oslo
- (wann)
-
2014
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Aastveit, Knut Are
- Foroni, Claudia
- Ravazzolo, Francesco
- Norges Bank
Entstanden
- 2014