Atmospheric particle abundance and sea salt aerosol observations in the springtime Arctic: a focus on blowing snow and leads

Abstract µ m particles (factor of 6, on average) and 0.06–0.3 µ m particles (67 %, on average) and a significant decrease (82 %, on average) in 1–4 µ m particles were observed compared to low wind speed periods. These size distribution changes were likely caused by the generation of ultrafine particles from leads and/or blowing snow, with scavenging of supermicron particles by blowing snow. At elevated wind speeds, both submicron and supermicron sodium and chloride mass concentrations were enhanced, consistent with wind-dependent local sea salt aerosol production. At moderate wind speeds below the threshold for blowing snow as well as during observed blowing snow, individual sea spray aerosol particles were measured. These individual salt particles were enriched in calcium relative to sodium in seawater due to the binding of this divalent cation with organic matter in the sea surface microlayer and subsequent enrichment during seawater bubble bursting. The chemical composition of the surface snowpack also showed contributions from sea spray aerosol deposition. Overall, these results show the contribution of sea spray aerosol production from leads on both aerosols and the surface snowpack. Therefore, if blowing snow sublimation contributed to the observed sea salt aerosol, the snow being sublimated would have been impacted by sea spray aerosol deposition rather than upward brine migration through the snowpack. Sea spray aerosol production from leads is expected to increase, with thinning and fracturing of sea ice in the rapidly warming Arctic.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Atmospheric particle abundance and sea salt aerosol observations in the springtime Arctic: a focus on blowing snow and leads ; volume:22 ; number:23 ; year:2022 ; pages:15263-15285 ; extent:23
Atmospheric chemistry and physics ; 22, Heft 23 (2022), 15263-15285 (gesamt 23)

Creator
Chen, Qianjie
Mirrielees, Jessica A.
Thanekar, Sham
Loeb, Nicole A.
Kirpes, Rachel M.
Upchurch, Lucia M.
Barget, Anna J.
Lata, Nurun Nahar
Raso, Angela R. W.
McNamara, Stephen M.
China, Swarup
Quinn, Patricia K.
Ault, Andrew P.
Kennedy, Aaron
Shepson, Paul B.
Fuentes, Jose D.
Pratt, Kerri A.

DOI
10.5194/acp-22-15263-2022
URN
urn:nbn:de:101:1-2022120804394755778398
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:25 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Chen, Qianjie
  • Mirrielees, Jessica A.
  • Thanekar, Sham
  • Loeb, Nicole A.
  • Kirpes, Rachel M.
  • Upchurch, Lucia M.
  • Barget, Anna J.
  • Lata, Nurun Nahar
  • Raso, Angela R. W.
  • McNamara, Stephen M.
  • China, Swarup
  • Quinn, Patricia K.
  • Ault, Andrew P.
  • Kennedy, Aaron
  • Shepson, Paul B.
  • Fuentes, Jose D.
  • Pratt, Kerri A.

Other Objects (12)